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Abstract

Equations for the mean and the turbulence quantities of compressible turbulent

flows axe derived in this report. Both the conventional Reynolds average and the

mass-weighted Favre average were employed to decompose the flow variable into a

mean and a turbulent quantities. These equations are to be used later in developing

second-order Reynolds stress models for high-speed compressible flows. A few recent

advances in modeling some of the terms in the equation due to compressibility effects

are also summarized.

134



,j

AIAA-91-1801-CP

UNSTABLE VISCOUS WALL MODES IN ROTATING PIPE FLOW

Z. Yang"

Center for Modeling of Turbulence and Transition

ICOMP, NASA Lewis Research Center

Cleveland, OH 44135

S. Leibovich t

Sibley School of Mechanical and Aerospace Engineering

Cornell University

Ithaca, NY 14853

Abstract

Linear stability of flow in rotating pipe is studied.

These flows depend on two parameters, which can be

taken as the axial Reynolds number Re and the rotat-

ing rate, q. In the region of Re >> 1 and q : 0(1), the

most unstable modes are concentrated near the pipe

wall, the so-called "wall" modes. These wall modes

are found to satisfy a simpler set of equations contain-

ing two parameters rather than four parameters as in

the full linear stability problem. The set of equations

is solved numerically and asymptotically over a wide

range of the parameters. In the limit of Re --* oo,

the eigenvalue goes to the inviscid limit. The eigen-

function shows a two layer structure. It reaches the

inviscid limit over the main part of the domain, while

near the wall of the pipe, the eigenfunction is repre-

sented by a viscous solution of boundary layer type.

1. Introduction

Swirling flow is common in nature and technology.

Fully-developed flow in a rotating pipe is an exact

solution of the Navier-Stokes equations, and is the

simplest available model of swirling flows. Swirling

flows are known to be subject to instability, and the

question of stability of flow in rotating pipe has con-

sequently attracted a reasonable amount of attention.

Pedley t showed that these flows are unstable to in-

viscid non-axisymmetric perturbations when the ro-

tation is fast (in a sense which will made definite).

Stability to inviscid perturbations in the finite rota-

tion rate region was studied numerically by Maslowe 2.

Later, Maslowe and Stewartson 3 extended this work

in a significant way and established by asymptotic

methods that the dominant unstable modes are wall
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modes (that is, modes of motion concentrated- asymp-

totically close to the wall) in the limit of large az-

imuthal wave number.

For viscous perturbations, Pedley 4, and simulta-

neously Jesoph and Carrel s found that the critical

Reynolds number at which the perturbation _ neu-

tral in the limit of fast rotation. Cotton and Salwen e

carried out comprehensive computations in search of

neutral stability curves and they discovered that the

neutral modes are center modes when Reynolds num-

ber is large. Center modes in rotating pipe flow were

later analyzed asymptotically by Stewartson, Ng and

Brown r, and these authors speculated that center

modes dominate for large Reynolds number.

In this study, we investigate the effect of viscos-

ity on the inviscid wall modes found by Maslowe and

Stewartson 3 when the Reynolds number is large but

finite. We find the proper scaling for Reynolds num-

ber in order for viscous wall mode to exist and derive

simplified governing equations for them. These equa-

tions contain only two parameters instead of four pa-

rameters in the full linear stability problem. The wall

mode equations are then solved both numerically and

asymptotically.

The plan of this study is as follow: Linear stabil-

ity analysis is formulated in section 2, where it is

shown numerically that the most unstable modes are

wall modes. The governing equations for viscous wall
modes are derived in section 3. Numerical solutions

of the viscous wall mode equations are presented in

section 4. An asymptotic analysis for the viscous wall

modes equations is carried out in section 5, and sec-

tion 6 concludes the paper.

2. Linear Stability Formulation

If length is nondimensionalized by the radius of the

pipe L and velocity by the the axial velocity at the

axis U, the laminar base flow in a pipe rotating with
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emgnlar velocity f_ is then described in a cylindrical

(z, 0, r) coordinate system by,

U -- (1 - r_,qr, O) (1)

where the inverse Rossby number

NL

q = T- (2)

measures the relative strength of rotation. This

nondimensionalisation also defines a Reynolds num-

ber

UL
Re = -- (3)

v

where _, is the kinematic viscosity of the finid.

Linear stability analysis concerns the stability of

the motion subject to infinitesimal perturbations.

Since the linens stability problem with base flow given

by (1) is then separable in the z and 0 directions, the

perturbation field may be written in the normal mode
form. i.e.

A [,,(,-),_(,-),,_(,-),v(,-)]e-p (i(k_ + _ - _)]

where A is an arbitrary constant, k is the axial wave

number of the perturbation and m is the azimuthal

wave number of the perturbation. _o is the complex

frequency, with its real part being the frequency and

the imaginary part being the growth rate. Without

loss of generality, m is taken as positive, k is any real
number, and o_ is to be found. If Ira(w) is positive,

the flow is linearly unstable.

The Navier-Stokes equations linearised about the

base flow, and the equation of continuity are of the

following form in the cylindrical coordinate system

used,

i'7u - 2r_o + ikp =

/

imp
i'7v -i- 2qw + _ :

7"

1 (O2v I O_ rr_2 "4"1 2imw
-_e \Or 3 +-r_r _*'+_r2 r2 -k2v /

a_=
iTw -- 2qv + c_r

1 (a2w 10w rn2+l 2irnv
_e \ Or 2 + -r _ _wr= -_r 2 -/_3_v /

im 01l/ lo
iku-F-- ÷ -t--- =0 (4)

1" lp _ r

where

=/c(1- r:) +mq-_

The above equations for the perturbations axe sup-

plemented by the following boundary conditions. On

the wall of the pipe, the no slip boundary conditions

requixe

u(1) = _(1) : w(1) = 0 (5)

At the center of the pipe, the pertuzbation must

satisfy the following conditions to ensure that to be

single-valued s

for m= 0

u'(0) = _(0) = w(0) = V(0) = 0,

forI_t : 1
u(O) = _(0) + im w(O) ----p(O) = O,

for m otherwise

,,(0) = ,,(0) = ,.(0) = p(O) = O. (6)

The above ordinary differential equations (4) and

the boundary conditions (5) and (6) form an eigen-

value problem with _ as the eigenvalue. Nontrivial

solution exists only when w takes some specific values

given by

: _(Re, q; m, k)

IfIra(w) islessthan zero, the flow is stable; if Ira(w)

is positive, the flow is said to be linearly unstable. We

axe interested in the regions where the instability oc-

curs. Earlier studies show, and our results com°trm,

that instability occurs only for mk< O. In the fol-

lowing, we will take m positive, and h negative.

The linear stability problem was studied exten-

sively by numerical means by Cotton and Salwen e

and by Yang _. Cotton and Salwen searched in the

parameter space (Re, q; rn, k) for the neutral modes

(modes with zero wl), and found that the neutral

modes are center modes, with most of the uontr/vial

activities confined near the center of the pipe. Yang's

study concentrated on the most unstable modes, and

we shall briefly describe the most unstable modes that

he found in the region Re :_, 1 and q = 0(1).

Table 1 gives the information for the most unsta-
ble modes at Re = 10000 and some different values

of q's. As q is increased, the the most unstable mode

has larger values of both the azimuthal and axial wave

numbers. In addition, we find for q = 0(1), although

the real part and the imaginary part of the eigen-

value have quite different size, the difference of the

real part of the eigenvnlue from mq is of the same

order as that of the imaginary part. These findings
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Table1: The most

with Re = 10000.

m: the azimuthal

k: the axial wave

w: the eigenvalue

q m

0.5 3

1.0 5

1.5 7

2.0 9

3.0 i 11

unstable modes for different q's

wave number,

number,

of the most unstable mode.

k w

-o.so (1.2s,0.17v)

-0.81 (4.67,0.296)

-1.04 (10.13, 0.379)

-1.20 (17.61, 0.439)

-1.22 (32.63, 0.s18)

suggest the viscous wall mode scalings studied in the
next section. For q = 3, the most unstable mode has

the wave numbers m : 11,k : -1.22. The eigen-

function corresponding to this most unstable mode is

shown in Fig 1. The eigenfunction is normalized such

that the maximum axial v_locity is 1. The real part

of the eigenfunction is drawn in solid lines, and the

imaginary part is drawn in dotted lines. The non-

trivial behavior of this eigenfunction takes place in a

thin region neat the wall of the pipe. This behavior

justifies the "wall mode" terminology used, and will

be the subject of further study in next section.

3. The viscous wall mode equation

From the numerical computations in the last sec-

tion, it is dear that in the region of Re >> 1 and

q = O(1), the dominant modes are given by the

asymptotic wall modes, a type of modes with large
azimuthal wave number and with nontrivial behavior

concentrated near the wall.

When azimuthal wave number m is large, there

could be another type of mode for general swirling

flows, the ring mode, as demonstrated by Leibovich

and Stewartson 1°. In the case of rotating pipe flow,

ring modes do not exist. Because of the existence of

the pipe wall, wall modes characterize the behavior

of perturbation with large azimuthal wave number.

Maslowe and Stewartson 3 studied the stability of

invisdd pipe flow to perturbations of very large az-

imuthal wave number, and established that the pre-

vailing modes are the wall modes in the limit of
rn --. co. Stewartson 11 analyzed the effect of the

viscosity on ring modes and found that viscous ef-

fects come into play in higher order terms because

the inviscid ring mode solution can satisfy the exact

boundary conditions of the problem.

We study the wall mode when the viscosity is taken

into account. 5ir:c." the inviscid wall mode is close to

the wall, where the no-slip condition is required but

1.1

u

|.e

-=.#

(*)I

1.1

to

a.m

(b)I

, "". ...... .-'

!

g.| t .a

' (c)

I

m.i I .I

Figure 1: Eigenfunction for .Re = 10000, q : 3, m :

II,k = -1.22. (a) a_al velocity,(b) azimuthal ve-

lodty, (c) radialvelocity.

is not satisfied by the invisdd solution, it is expected

that the viscous effect might be important in this

case, at least in certain regions .

We are going to study the linear stability problem

for large azimuthal wave number and large Reynolds

number, i.e. both m and Re are large. In this case,

the proper wall mode scalings are

r - 1
(,n2 + k2)t/z

w = iu9

2p
m

2k

2k_
(7)

w = mq (m 2 +kZ)t/2

The scaling for the radial variable means that the be-
havior of the wall mode is confined to a small distance

to the wall comparable with the wave length of the

perturbation. The scaling for the Reynolds number

giv÷q the balance between the viscous term and the

inertia term. The form of the scaling for the complex
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frequencyissuggested by the numericM computations

of the full lineaz stability problem. In above, a mi-

nus sign is introduced in places where k appears, for
we know from the full lineax stability problem that

instability occurs only when mk< O.

Upon substituting the above expressions into the

Line_ized Navier-Stokes equations and the equation

of continuity for the perturbation, and dropping the

terms of order m -l and smaller, we find that u9 should

satisfy the following single equation, after u, v, 15 are
eliminated.

LDLD_ - LL& + LD&- Q_ = o (8)

whele

d
D -

dT?

and

i

Z = R_(D_-I)-(.+_)

Q _ q(., + qk) (9)
k

which emerges as one of the independent parameters
for the viscous wall mode.

The boundary conditions ate

=D_:D2L_-L*_=Oatr/:O (I0)

and

= D_ = D2L_ - L_ = 0 as _? ---, oo (11)

Thus, we have established the formulation for the

viscous wall modes. The governing equation takes

a simpler form compared with the full problem, and

the number of the independent parameters is reduced

from four to two. Of these two parameters,/_e and Q,

Q measures the effect of rotation on the wall mode
and /_e measures the effect of viscosity on the wall

mode. The solutions of above wall mode problem

will give:

: _(._e, Q)

If Ira(&) is less than zero, the flow is linearly stable;

if Im(_) is positive, the flow is said to be linearly

unstable.

4. Numerical Solution of Wall Mode Equations

In general, solutions of the wall mode equation have

to be found numerically. Because the eigenvnlue en-

ters quadratically, this wail mode equation gives a

nonlinear eigenvalue problem. Tiffs nonlinear eigen-

value problem is changed to a system of linear eigen-

value equations by letting

r : Le 02)

In Y, _, the governing equations are

L(D 2-1)Y + 2DY-(Q-2)_ = 0

Y-L_ = 0 (13)

and the boundary conditions are

: D_= DZY-Y:O at r/= 0 (14)

= D& = D2Y - Y : 0 as ,7--"oo (15)

We employed a spectrM method with Chebyshev

polynomials as the basis functions to solve equations

(13)- (15). Because the domain ofdefiuition extends

to infinity, while Chebyshev polynomials are only de-

fined over [-1, 1], the method of domain truncation

was used to numerically truncate the domain of def-

inition from [0, co) to [0, b] and the boundary condi-

tions at infinity are replaced by

"_= D_:D2Y-Y=O at 7/=b (16)

In the spectral method used, we write

N

= _ w,z_,(_)
¢= 1

N

Y = _ Y,T,_,(_,) (m
i=t

where y is related to r/by

y : 2n/b - 1.

Thus the domain of definition for y is [-1,1]. The

reduction from the differential equations to a set of

algebraic equations is made by a Galerkin-Tau projec-

tion -- i.e. the Galerkin method is used to project the

equations while the Tau method is used to enforce the

boundary conditions on the spectral representations

of the perturbation field. The Galerkin-Tau projec-

tion results in an set of aigebraic equations, which are

of the form of generalized eigenvalue problem with

complex matrices.
Two methods are used in this study to find the

eigenvalues and the eigenvectors of this complex gen-

eralized eigenvalue problem. One method uses the

IMSL subroutine EIGZC which uses the QZ transfor-

mation to find all the eigenvaiues and, optionally, all
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the eigenvectors. The other method used is an inverse
t.i

power iteration for the generalized eigenvalue prob-

lem developed by Kribus i2, which finds the eigen-

value closest to the initial guess and its corresponding

eigenvector. The inverse power iteration is faster, so ,.,

it is used whenever a good guess is available. The QZ
is used to provide the starting values for the Inverse

Power Iteration. It is also used when the phenomenon

of mode jumping is suspected to occur. _.,

Since the eigenfunctions decay exponentially as

--. _o, b = 10 was found sufficient for most of the

calculations. The number of terms in the Chebyshev

representation, N, varies with 2_e. For order one/_e ....

we must take N : 60, and b : 10 to achieve three

digit accuracy in eigenvalue, and O(10 -4) accuracy

for the eigenfunction. But when /_e is large, the so-

lution shows a behavior of boundary type for rl near .... ,.0
zero, i.e. near the wail of the pipe, and a large value

of N is needed to resolved this region. The largest iV

needed for the parameter range covered here is 115.

There is a symmetry in the eigenvalue problem due

to the replacement of the boundary conditions at in-

finity by the conditions at r/ = b. The solution is

invariant under

T/ _-+ b--T/

y t--+ y*

where the star means the complex conjugate. This

symmetry signifies that for a given solution, its im-

age about 7/= b/2 is also a solution of this equation

with the same growth rate. Apparently, this solution

is a spurious mode in the sense that it is a solution

of the differential equation aRer enforcing the bound-
ary condition at finite b rather than the solution of

the original differential equation defined over the in-

finite domain. This symmetry property can be used

to check the resolution of the numerical solution of

the algebraic problem, which should also exhibit this

symmetry.

Extensive computations were carried out in the

(2_e, Q) plane. Fig 2 shows the imaginary part of the

eigenvalue _, which is proportional to the growth rate

of the perturbation, vs. /_e for some different values

of Q. The eigenvalues shown are for Q = 5, 10, 20, 30,

40, 50 respectively, although numerical computations

were carried out for a larger range of Q. The real

part of the eigenvalue is shown in Fig 3. The growth

rate increases as Q is increased, which r_:ans that ro-

tation helps perturbations to extract energy from the

I
I
t
4

1

s._l Tl.J ,,.s _.J

/h

Figure 2: The imaginary part of the wall mode eigen-

values vs. /_e for Q : 5, 10, 20, 30, 40, 50.

base flow. This result is in agreement with that of

Pedley 1, who found that the maximum growth rate
is 2.0 and is reached in the fast rotation limit. This is

exactly the same as the upper bound for the growth

rate for flow in the rotating pipe, as shown by Joseph
and Carmis.

The growth rate increases with /_e. As /_e gets

large, the growth rate wiU increase. The eigenvalues

seem to change smoothly _s -_e _ co and approach

to the results found by Maslowe and Stewartson from

their inviscid analysis. The limit of/_e -. oo will be

analyzed asymptotically in the next section, and a

comparison of the results with the inviscid case will
be made.

Fig 4 shows the eigenfunction for/_e = 2, and Q =

5. The eigenfunction plotted is normalized such that

its maximum modulus is 1 and its phase at the posi-

tion of maximum modulus is 0. As in the eigenfunc-

tion plotted in Fig 1, the real part of the eigenfunction

is drawn in solid line while the imaginary part of the

eigenvalue is drawn in dotted line. To see the effect

of increasing Q on the eigenfunction, we show in Fig

5 the eigenfunction for /_e = 2 and Q = 20. As Q

increases, the eigenfunction is pushed outward, but

this response is not very sensitive to Q. To see the

effect of changing/_e, Fig 6 shows the eigenfunction

for/_e -- 100 and Q = 5. As /_e increases, the eigen-

functions are pushed towards 7/-- 0, i.e. toward the
wall. The limit of/_e -. oo will be the further studied

in the next section.

5. The Limit of/_e -, co
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Figure 3: The real part of the wall mode eigenvalues Figure 5: Wall mode eigenfunction, Re = 2, Q : 20

vs. /_e for Q = 5, 10, 20, 30, 40, 50.
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e.g le.m

Figure 4: Wail mode eigenfunction, Re : 2, Q : 5 Figure 6: Wall mode eigenf'unction,/_e = 100, Q = 5.
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Maslowe and Stewartson s carried out the wall

mode analysis for m >> I for the inviscid case. One

of the purposes of our viscous wall mode analysis is

to see if the results of their inviscid analysis is the

limit of the viscous analysis for large Reynolds num-

ber. We use a perturbation technique to address this

question in thissection.

For ]_e >> i,e can be expanded formally by taking

]_e-I as the small parameter, we write:

: w_(_)+ _-_w_'(,7)+ .--

To leading order, the equation f_ W_ is:

Q )W_ = 0 (18)
D=w_ - (i+ (,_+_)-------_+

with the followingboundary conditions:

w_(o) = 0 (19)

w_(n --.co) ---,0 (20)

This poses the same eigenvaiue problem that was

studied by Maslowe and Stewartson, thus theirsolu-

tions (both the eigenvalue and the cigenfunction) may

be viewed, as might have been expected, as the first

term in a formal outer expansion in inverse powers of

The outer solution thus found can satisfy all the

boundary conditions at infinitysince the outer solu-

tiondecays exponentially as ¢/---*oo. But not allthe

boundary conditions at 7?= 0 can be satisfied.For

ex_ple, Z)W_(0) # 0. Thus, another (inner) solu-

tion of boundary type near 7/= 0 is needed.

The inner variable is found to be:

C = __e_/2

The inner expansion isassumed to be:

,_= _JCW_(c)+ _e-_/_(C) + ..-)

where d is to be determined.

ARer substituted into the governing equation, the

equation to leading order is found to be:

(b: + _)2b:V_o = 0 (2])

where

d
b = --

The boundary conditions for the inner solution are:

_(0) = 0

b_(o) = o

(b:+ _)-+w_(o)= o (22)

In addition, the solution is requited to match the

outer solution in the matched asymptotic sense.

The general solutions of the inner problem in the

leading order can be found, and they are

where

+_ C exp(A2C)+ _s + _ ¢

At,_=+(/_)t/2

(23)

and fit, _2,/_a, _, fls,/$s ate constants to be deter-

mined by the boundary conditions and the matching

conditions. 05 is given by the outer solution.

The boundary conditions at _ = 0 require that

g_+/_+_s = o

fltAt+ fl_+ fl_A_+ fl_+ _ = o

2A__h+ 2_ = o

As ( -4 oo, the inner solution must also match the

outer solution. Near ¢/= O, the outer solution is, to

leading order,

_here _, = DW_(O)# o.
To carry out the matching, we need to know the

behavior of W_ for large ¢. The behaviors of the

exponential terms are determined by the sign of the

real parts of At, A_. Since At, Aa are the square roots

of (/_), At is the negative of A_. In this study, we
take

_(_) < o

R_(.X_)> o

As _ -4 oo, the matching of the exponentially grow-

ing terms gives:

fla = 0

_'_ = 0

The exponentially small terms are immaterial, and

the matching of the algebraic terms gives

Re_o C = aW (24)

1

2

which gives

141



and

ALl the other constants can be determined, yielding

_ll = 0

_s = a/_l

The inner solution, to the leading order, is

W'_o(_) = ci(¢[ -t- _-1(1 - exp(_l_))) (25)

Thus, we have the following composite solution to the

leading order:

w_ = wG(,D+ _o(_) - _. (26)

Thus, one sees that indeed, the solutions for the

most unstable modes found by Maslowe and Stew-

artsoa are the correct limit when/_e --, oo, except in

a thin layer neaz the wall of the pipe where the flow

field is described by a viscous layer of the boundary

layer type. The eigenvalues found are the same as for
the inviscid case.

The above asymptotic analysis is confirmed by the

numerical calculation. In Table 2, we present the

eigenvalues for ._e = 100 and in Table 3, we present

the eigenvalues from the inviscid calculation for.a few

values of Q. It is seen that differences of the dgen-
values in these two cases are small. In Fig 7, we show

the eigenfunction for Q : 5.0 from the inviscid calcu-

lation. It is seen that the general shape agrees with

the viscous calculation presented in Fig 6. To" see

the existence of a thin viscous layer near the wall, we

present in Fig 8a a blow-up of Fig 6, and in Fig 8b

a blow up of Fig 7 near the wall. It is seen that flow

fields near the wall are different, the viscous solution

has a zero slope while the solution from the inviscid

equation has a non-zero slope.

6. Discussion

We have examined the linear stability of rotating

pipe flow to perturbations of large azimuthal wave
number. It is found that when the azimuthal wave

number is large, the nontrivial behaviors are concen-

trated near the wall of the pipe, so the prevailing

variations are manifested as wall modes. The equa-

tions governing wall modes are found to contain two

parameters /_e and Q, which measure the Reynolds

number and swirl, respectively.

Table 2: Eigenvalue of viscous wall mode.

Q eigenvalue (Re = 100)

5.0 (-0.14917D+01, 0.72752D+00)

10.0 (-0.18163D+01, 0.15096D+01)

20.0 (-0.21617D-k01, 0.26668D+01)

30.0 (-0.23766D-t-01, 0.35755D+01)

40.0 (-0.25358D+01, 0.43505D+01)

50.0 (-0.26633D+01, 0.50384D+01)

Table 3: Eigenvalue of inviscid wall mode.

Q eigenvalue (2_e = oo)

5.0 (-0.14142D+01, 0.68305D+00)

10.0 (-0.17476D+01, 0.14875D+01)

20.0 (-0.21038D+01, 0.26574D+01)

30.0 (-0.23247D-I-01, 0.35710D-I-01)

40.0 (-0.24877D+01, 0.43487D-k01)

50.0 (-0.26181D+01, 0.50383D+01)

u_

I# 1 i _ ' i ;..
#.l I.i 4.1 L# i.i m.i

Figure 7: Wall mode eigenfunction for the inviscid

case, Q = 5.
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Figure 8: Comparison of the wall mode elgenfunc-

tions near the wail. (a) the viscous solution at Re :

100, (b) the inviscid solution.

For large azimuthal wave number, the wall mode

is a distance O(ra -I) away from the wall. Vis-

cous effects are confined to a layer with thickness

of O(Re -t/2) near the wall. The case treated here

is when those two layers are of the same order, i.e.

Re = O(m=). When Re/m = >> I, we would ex-

pect the solution to be mMn/y inviscid, as found by

Maslowe and Stewartson, except in a thin viscous

layer near the wall. This is indeed the case as shown

both numerically and asymptotically.

The region for the rotation rate considered is q.=

0(I). For large value of q, which corzesponds to the
fast rotation case, Pedley 4 shows that as Reynolds

number is increased, the dominant mode is taken by

perturbations of larger and larger values of m, the

azimuthal wave number. In the limit of Re -. 0% the
azimuthal wave number for the dominant modes wi/1

also go to infinity, and these modes could be viewed
as wall modes. Thus, our work here can be viewed

as an extension of Pedley's work t'4 to the region of

q = 0(1).

Left unexamined is the case when the inviscid so-

lution has a singularity, in which case the form of

the expansion we assumed would break down. In the

study of Maslowe and Stewartson, the leading mode

is a neutral mode when Q = 2. For Q > 2, the

leading mode is unstable, but there are still neutral

modes. The neutral modes have a 1/(r - r0) singu-

larity, where r0 is the location of the daguladty. It is

expected that a local viscous critical layer based on

our viscous wail mode formulation would get rid of

this singularity.
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